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Inhomogeneity-induced superconductivity?
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PACS. 74.20.-z – Theories and models of superconducting state.
PACS. 74.20.Mn – Nonconventional mechanisms (spin fluctuations, polarons and bipolarons,

resonating valence bond model, anyon mechanism, marginal Fermi liquid,
Luttinger liquid, etc.).

PACS. 71.27.+a – Strongly correlated electron systems; heavy fermions.

Abstract. – A t-J–like model for inhomogeneous superconductivity of cuprate oxides is
presented, in which local anisotropic magnetic terms are essential. We show that this model
predicts pairing, consistent with experiments, and argue how the macroscopic phase-coherent
state gradually grows upon lowering of the temperature. We show that appropriate inho-
mogeneities are essential in order to have significant pair binding in the thermodynamic limit.
Particularly, local breaking of SU(2) spin symmetry is an efficient mechanism for inducing pair-
ing of two holes, as well as explaining the magnetic scattering properties. We also discuss the
connection of the resulting inhomogeneity-induced superconductivity to recent experimental
evidence for a linear relation between magnetic incommensurability and the superconducting
transition temperature, as a function of doping.

There is a growing body of experimental evidence suggesting that the superconducting
state in cuprate oxides is “inhomogeneous”, such that the locally defined charge density varies
across the sample in the ground state. Spatially inhomogeneous features in the spin and
charge channels have been indicated in a number of experiments on high-Tc materials [1–6].
The simplest realization of this state is the so-called “stripe” phase where charges cluster
in nanoscale linear patterns and the remainder of the sample is essentially an antiferromag-
netically correlated insulator. This represents a nanoscale distribution of charge and spin,
rather than a global phase separation. These experiments lead us to a central question: Is
the superconducting state found in high-Tc cuprates inhomogeneous as a result of spin/charge
inhomogeneities? We believe that the answer to this question is yes. Moreover, we argue that
spatial spin/charge inhomogeneities are in fact necessary for pairing and subsequent formation
of the superconducting state in these compounds. This situation should be contrasted with
the case of conventional superconductors, resolved by the BCS (Bardeen-Cooper-Schrieffer)
theory, that starts with a homogeneous metallic state and describes the formation of a homo-
geneous superconducting state. It is commonly believed that magnetic correlations, charac-
terized by the spin exchange energy J ∼ 1500K are responsible for the pairing interactions in
the cuprates and are, therefore, crucial for our inhomogeneous exchange approach. Moreover,
the existence of a spin gap has been experimentally proven [7]. A model that naturally in-
corporates these features (inhomogeneities, magnetism and spin gap) is a t-J–like model with
explicitly broken spatial and magnetic symmetries.

Of central importance for the present work is a microscopic model which captures the
main low energy physics of doped antiferromagnetic (AF) Mott insulators. In particular, we
show that our minimal model properly describes the magnetic properties observed in a wide
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variety of doped cuprate oxide materials. The key ingredient is the existence of magnetic
perturbations which explicitly break local spin-rotational invariance (e.g., due to local spin-
orbit coupling [8]) and thereby induce substantial hole pair binding. We then develop a
mean-field theory of superconductivity based upon a phenomenology from our microscopic
model. We emphasize that in our approach there are two, in principle different, energy scales;
one associated to the pairing of holes and another related to the phase coherence of the pairs
(that establishes Tc). Basically the inhomogeneities induce a strong hole pairing, which in
turn Josephson-tunnels coherently between stripes, separated by insulating AF regions, phase-
locking into a macroscopic supercurrent superfluid stiffness. Recently, a simple linear relation
between the superconducting transition temperature Tc and the AF incommensuration δ has
been observed for the LSCO [3] and YBCO [4] high-Tc compounds: kBTc ∝ δ, where kB is
the Boltzman constant. We find that for this relation to hold we need a power law Josephson
tunneling.

Microscopic model. – Our model Hamiltonian describing the low energy dynamics of
CuO2 planes is H = Ht-J + Hinh, where the background Hamiltonian Ht-J is the standard
t-J model,

Ht-J = −t
∑

〈i,j〉,σ
c†iσcjσ + J

∑
〈i,j〉

(
Si · Sj − 1

4
n̄in̄j

)
. (1)

For the inhomogeneous component, we take
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∑
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with δJ⊥ �= δJz, representing the magnetic perturbation of a static local Ising anisotropy,
locally lowering spin symmetry. Here 〈i, j〉 are near-neighbor sites, while 〈α, β〉 are two near-
neighbor sites characterizing the bonds that are perturbed and where SU(2) spin-rotational
invariance is explicitly broken. The network of perturbed bonds form mesoscopic patterns
determined by the distribution of stripe segments. The spin-1

2 operator Si = 1
2c

†
iστσσ′ciσ′ , the

electron occupation number n̄i = c†i↑ci↑ + c†i↓ci↓, and c†iσ(ciσ) creates (annihilates) an electron
of spin σ in a Wannier orbital centered at site i; τ are the 3 Pauli matrices. This is a three-
state model with the hopping constrained to the subspace with no doubly occupied sites. In
the following, all energies will be measured in units of J .

Our modeling strategy consists in assuming the existence of an inhomogeneous mesoscopic
skeleton of stripe segments [9], and then exploring its consequences, mainly the competition
between magnetism and superconductivity. We do not address here the important problem
of the formation and stability of this skeleton morphology. The origin(s) of “stripe segment”
formation in high-temperature superconductors is as yet unclear and several physical mecha-
nisms could act cooperatively and be responsible for the generation of multiple length scales,
among them: spin-orbit coupling, local Jahn-Teller distortions induced by the hole, effective
interactions coming from a multi-band Hubbard Model (HM) (including explicitly the oxygen
and copper bands), oxygen buckling at the stripe, and other local magnetoelastic effects [10].
Competitions between attractive short range forces and repulsive long range ones can certainly
spontaneously break translational and/or rotational invariance in the CuO2 planes [11,12], but
this is not necessarily the only mechanism. However, we show below that the mere existence
of appropriate local magnetic anisotropies is crucial for pair-formation.

We start by showing that, as far as we could numerically determine, only by including
a local Ising perturbation such as Hinh in eq. (1) can a strong pairing of holes be obtained
(see fig. 1). All the calculations were made using exact diagonalization in small clusters with
periodic boundary conditions in all spatial directions. We studied one-dimensional (1D) chains
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Fig. 1 – Schematic representation of the superconducting ground state. AF zones between stripe
segments are colored in blue. Red spins near the stripes represent easy-axis Ising-like links. Gray
ellipses characterize the bound pairs (holes in red). Note the zig-zag alignment of the holes, and the
AF domains π-shifted at each side of the stripes.

up to 16 sites and 8 × 2 clusters. Hereafter, we will view our clusters as simulating systems
where the longer direction is perpendicular to the stripes. We investigated the system size
scaling for the binding energy of two holes defined as Eb = (E2 holes − E0 hole) − 2(E1 hole −
E0 hole) for several models in 1D and 2D. Although for small enough systems the binding
energies could be very large, they all seem to extrapolate towards no (or extremely small)
binding in the thermodynamic limit, with the clear exception of the inhomogeneous t-JJz

case. We have also studied several one-band HMs, but we could again not find definite binding.
The t-JJz model, the only one unambiguously giving binding in the thermodynamic limit, is
obtained by breaking spin-rotation symmetry in d near-neighbor bonds 〈α, β〉, repeated with
period P , by an amount δJz = 0, δJ⊥ < 0 in eq. (1). This t-JJz model is a most natural way to
induce a spin-gap. We have checked that the spin-gap is present for our t-JJz model [13]. The
inhomogeneities forming the superstructure, which we impose by hand in the Hamiltonian,
we term stripes. In fig. 2 we show the hole correlation function 〈g|n0 · ni|g〉, where |g〉 is the
ground state of the system (〈g|g〉 = 1). This correlation function gives information about the
structure of the pair. It can be seen that as the hopping strength t is increased beyond a
characteristic value the second hole jumps from one stripe to the neighboring one, starting
from an initial configuration where both holes are in the same stripe for small t. This can
be understood as a result of a length(time)-scale competition: the pair size exceeds the stripe
width.

To explore the nature of the binding, we have examined the canonical transformation
of a t-J model from a one-band HM and traced what kind of perturbations would produce
a t-JJz term. This corresponds to a term like −V ∑

σ n̄i,σn̄j,σ̄ (i, j first neighbors) in an
extended HM, which may in turn arise, for example, from local magnetoelastic (e.g., oxygen
(un)buckling) [14] or spin-orbit couplings. Note, again, that here this is a perturbation only at
the stripes. This kind of anisotropy manifests itself in two different ways in the t-JJz model,
enhancing both the − 1

4 n̄in̄j and the easy axis (Ising) terms of the Hamiltonian. The first one
is an explicit pairing term for electrons. To see the relative importance of each term we have
calculated the binding energy of a Hamiltonian like (1) but excluding the − 1

4 n̄in̄j term and
including bonds with broken spin-rotational symmetry. This model corresponds to holes (with
no spin) propagating in an antiferromagnet, but not derived from a canonical transformation
of a one-band HM. We find that it still has binding, as should be expected. Thus, the easy
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Fig. 2 – Correlation function for 2 holes in a 16× 1 chain with d = 3, P = 8, J = 1 and δJ⊥ = −0.9
(top); and for 4 holes in 8×2 with d = 1, P = 4 and the other parameters as before (bottom). Lines
in the insets show the perturbed bonds. In 16 × 1, as t grows the pair switches from occupying one
single stripe, to two neighboring ones. In the (2 stripes) 8× 2 case, the holes remain at both ends of
the anisotropic bond, but as t is increased they form an effective two-site stripe because of transverse
spin fluctuations. The magnetic energy is lowered by π-shifting the AF domains on either side of the
stripe.

axis exchange term is partially responsible for the binding energy.
In order to understand this exchange-based pairing mechanism, it is useful to explore

some limiting cases. When the magnetic energy scales are the most relevant ones: (Jz =
J + δJz , J⊥ = J + δJ⊥) 
 t, it is easy to realize that, depending upon Jz, J⊥ being smaller
or larger than J , the holes will prefer to be in the stripes or between stripes (with no binding),
respectively. The opposite limit, i.e. purely kinetic energy, leads to delocalized holes and no
binding. The situation where Jz < J and t is relevant corresponds to the intermediate regime
where pairing is observed. Notice that pairing of holes does not necessarily imply that holes
should share the same stripe, they can occupy neighboring ones (see fig. 2, upper panel), thus
avoiding phase separation. Details of the charge confinement and pairing potentials from the
(dynamic) spin-field profiles in the superlattice skeletons will be given elsewhere.

Having demonstrated a minimal model for hole binding, we have computed spin correlation
functions in clusters of size Nx ×Ny = N (Nx = 8, Ny = 2). Here, we simulate the stripes by
including an anisotropic δJ⊥ < 0 in one y-bond with P = 4; the rest of the bonds, including
all the x-bonds, were not changed from the background t-J model (see inset, fig. 3). We
cannot perform scaling on this size of inhomogeneous system, but the binding energy is still
considerable. We have included up to 6 holes. In the case of four holes (the one more relevant
to the stripes in the underdoped regime for cuprate oxides) and small t (� J) the holes bind
in pairs on each site of the inhomogeneous bond (see fig. 2, lower panel).

In fig. 3 we show the spin-structure factor function S(k = (kx, ky)) defined as 〈SkS−k〉 =
(1/N)

∑
i,j exp[ik·ri] 〈g|Sj ·Sj+i|g〉. This function corresponds to the observable in the elastic

neutron scattering experiments. For t small, only one peak occurs with ky = π, corresponding
to two essentially uncorrelated AF domains, isolated from each other by the pinned hole wall.
As t increases (t/J � 2, near the accepted set of values of the 2D t-J model for cuprates [15]),
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Fig. 3 – Spin-structure factor for a t-JJz ladder (8×2) with two δJ⊥ = −0.9 bonds in the y-direction
(see inset). The incommensurability appears only for t larger than a critical value. When 6 holes are
added to the system the double peak disappears and is replaced by a broad one around k = (0, π).

the holes gain kinetic energy by visiting the first neighbor sites around the anisotropy region,
but still bind together. The effective width of the pair thus increases to two sites. Magnetic
energy is then gained if the two domains shift their staggered magnetization by π. We suggest
that these O(t2) processes are responsible for the incommensuration (δ) in S(k) observed in
the experiments [1]. This δ is the inverse of twice the period P of the stripes. In this picture
the incommensuration is a consequence of the holes and their kinetic energy, and is a property
of the ground state. Basically, it results from the competition between hole delocalization and
magnetic fluctuations. This contrasts with some other proposed explanations, where δ is a
magnetic thermodynamic property [16]. It is interesting to note that this incommensuration
arises even in the homogeneous t-J model although for different values of t. This suggests
that the experimentally observed magnetic properties are already present in a homogeneous
t-J model, but in order to obtain binding of holes appropriate inhomogeneous terms must be
included.

When more than four holes are added to the system, but only two bonds are perturbed,
S(k) changes qualitatively. Instead of showing an incommensurability around k = Q =
(π, π), it has a broad peak at k = (0, π). In this case the extra holes are delocalized in the
middle of the AF space between stripes. This suggests that when the stripes reach their
minimum separation, extra holes are responsible for the experimental increase and ultimate
disappearance of the incommensurability.

Model of Josephson spaghetti. – It is important to relate the above discussion to the ex-
perimental evidence for the incommensurate neutron scattering peak, seen in LSCO (e.g., [3])
and YBCO compounds [2]. In both of these cases a simple linear relation between Tc and the
peak incommensuration δ near Q (or peak width in YBCO) is obeyed [3, 4]. Namely,

kBTc = �v∗δ . (2)

The anomalously low velocity values for v∗ depend on the compound [4]. These velocities are
independent of the carrier concentration and the only doping (x) dependence entering eq. (2)
is through δ(x).

An interpretation of this relation is to connect possible superconductivity mechanisms
to the existence of the fluctuating stripes. Here we focus on the simple proportionality be-
tween Tc(x) and a doping dependent length �(x), determined from the neutron scattering:
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Fig. 4 – Schematic Josephson coupling between an assumed distribution of stripe segments. For the
incommensuration δ to be observed along crystallographic (1,0) and (0,1) directions, the stripe-stripe
distances must have average 〈r〉 ≈  = 1/δ. 〈J〉 will be determined by the probability distribution
P (r) that determines the statistics of inter-stripe distances. Physically it is clear that P (r) should be
centered near , with some width arising from the meandering of stripes (see text).

Tc(x) ∝ 1/�(x), �(x) = 1/δ(x). We consider how the Josephson tunneling of pairs between
stripe segments can produce the relation between the phase ordering transition temperature
Tc and the typical length �(x). The stripe-stripe distance r is a random quantity due to
intrinsic mechanisms as well as disorder and/or crystal imperfections [11, 12]. Therefore, we
will assume that the mean-field transition temperature depends upon the Josephson coupling
〈J(r)〉, averaged with some probability distribution of stripe separations.

Our model Hamiltonian of random stripe separation and associated inter- and intra-stripe
random Josephson coupling (see fig. 4) is

H =
∑
ij

Jij exp[i(φi − φj)] , Jij = J(rij) = t0/r
α
ij , (3)

where the summation is taken over the coarse-grained regions i = 1, · · · ,N with well-defined
phases, labeled φi = φ(ri) and Jij becomes zero eventually at large distances. Next, we will
assume some probability distribution P (r) for the stripe-stripe distance. For simplicity we
will take the “box” distribution P (r) centered around � = 1/δ and with finite width a = ν�,
where ν = O(1) is a parameter. P (r) = C, for � − a ≤ r ≤ � + a, and zero otherwise. Here
we have simplified to one length scale for both a and �. The normalization constant in 2D is
C = [4π�a]−1. In this model one easily finds

〈J(r)〉 =
∫

d2rP (r)J(r) =
2πt0C
2− α

a1�
2−α ,

〈r〉 =
2πC
3

a2�
3 , (4)

where the constants a1, a2 are O(1). Thus, for α = 1, we obtain the experimentally observed
relation

Tc(x) � 〈J(r)〉 ∝ [〈r〉]−1 = δ(x) . (5)

We have examined a variety of distributions P (r) and functional dependences for Jij ; eq. (3)
with α = 1 is the only one reproducing the experimental data (at our mean-field random
Josephson coupling level. Implicit in J(r) is the exponential cutoff at lengths much larger
than the stripe-stripe distance. This cutoff is necessary to have a well-defined thermodynamic
limit but is not important for short length scales). The screening mechanism (magnetic, elastic
fluctuations, etc.) responsible for this form requires detailed microscopic modeling [17]. The
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present model does not allow us to determine the magnitude of v∗ without making specific
assumptions about parameters such as t0.

In conclusion, we have presented a microscopic model that captures the essential magnetic
and pairing properties of high-temperature cuprate superconductors. Pairing of holes is a
consequence of the existence of an AF background. (Analogous scenarios in other broken
symmetry backgrounds, e.g., doped charge-density-wave bismuthates, are likely.) Crucially,
however, the glue is provided by magnetic inhomogeneities whose precise origin remains to
be unraveled, although it seems fundamental that these perturbations should locally break
spin-rotational invariance. This pairing mechanism is kinetic exchange-interaction–based and
involves a competition between Ising and XY symmetries. We emphasize that the pair-
binding occurs only for intermediate strengths of t and (local) Jz. We also introduced a
phenomenological model and scenario for the macroscopic superconductivity based upon co-
herent Josephson-tunneling of pairs of holes between these magnetic inhomogeneities in a
mesoscopic liquid-crystal–like [11] skeleton. We have shown that this approach is able to
recover the magnetic incommensuration δ and its experimentally observed relation to Tc(x).
Finally, we note that we have assumed static magnetic inhomogeneities. The case where the
broken spin-symmetry follows the hole is also interesting. Elsewhere, we will discuss this
generalization of coupling the inhomogeneity self-consistently to dynamic holes.

∗ ∗ ∗
Work at Los Alamos is sponsored by the US DOE under contract W-7405-ENG-36.

REFERENCES

[1] Shirane G. et al., Phys. Rev. Lett., 63 (1989) 330; Cheong S.-W. et al., Phys. Rev. Lett., 67
(1991) 1791; Luke G. M. et al., Physica C, 185-189 (1991) 1175; Tranquada J. M. et al.,
Phys. Rev. B, 46 (1992) 5561; Mook H. A. et al., Phys. Rev. Lett., 70 (1993) 3490; Mason

T. E. et al., Phys. Rev. Lett., 71 (1993) 919; Matsuda M. et al., Phys. Rev. B, 49 (1994)
6958; Tranquada J. M. et al., Nature (London), 375 (1995) 561; Aeppli G. et al., Science,
278 (1997) 1432; Nachumi B. et al., Phys. Rev. B, 58 (1998) 8760; Suzuki T. et al., Phys.
Rev. B, 57 (1998) 3229; Kimura H. et al., Phys. Rev. B, 59 (1999) 6517.

[2] Mook H. A. et al., Nature, 395 (1998) 580. See also ISIS report at http://www.isis.rl.ac.uk/
ISIS98/feat11.htm.

[3] Yamada K. et al., Phys. Rev. B, 57 (1998) 6165.
[4] Balatsky A. V. and Bourges P., Phys. Rev. Lett., 82 (1999) 5337; Balatsky A. V. and

Shen Z.-X., Science, 284 (1999) 1137.
[5] Noda T., Eisaki H. and Uchida S., Science, 286 (1999) 265.
[6] Zhou X. J. et al., Science, 286 (1999) 268.
[7] Dai P. et al., Science, 284 (1999) 1344.
[8] Bonesteel N. E., Rice T. M. and Zhang F. C., Phys. Rev. Lett., 68 (1992) 2684.
[9] Krumhansl J. A., in Lattice Effects in High-Tc Superconductors, edited by Y. Bar-Yam et al.

(World Scientific) 1992.
[10] Yu Z. G. et al., Phys. Rev. B, 57 (1998) 3241.
[11] Kivelson S. A., Fradkin E. and Emery V. J., Nature, 393 (1998) 550.
[12] Stojkovic B. P. et al., Phys. Rev. Lett., 82 (1999) 4679.
[13] Eroles J., Ortiz G., Balatsky A. V. and Bishop A. R., unpublished.
[14] Buchner B. et al., Phys. Rev. Lett., 73 (1994) 1841; McQueeney R. J. et al., Phys. Rev.

Lett., 82 (1999) 628.
[15] Batista C. D. and Aligia A. A., Phys. Rev. B, 48 (1993) 4212.
[16] Kim Y. J. et al., cond-mat/9902248.
[17] Castro Neto A. H., Phys. Rev. Lett., 78 (1997) 3931.


